A Nonquadratic Regularization-based Technique for Joint SAR Imaging and Model Error Correction
نویسندگان
چکیده
Regularization based image reconstruction algorithms have successfully been applied to the synthetic aperture radar (SAR) imaging problem. Such algorithms assume that the mathematical model of the imaging system is perfectly known. However, in practice, it is very common to encounter various types of model errors. One predominant example is phase errors which appear either due to inexact measurement of the location of the SAR sensing platform, or due to effects of propagation through atmospheric turbulence. We propose a nonquadratic regularization-based framework for joint image formation and model error correction. This framework leads to an iterative algorithm, which cycles through steps of image formation and model parameter estimation. This approach offers advantages over autofocus techniques that involve postprocessing of a conventionally formed image. We present results on synthetic scenes, as well as the Air Force Research Labarotory (AFRL) Backhoe data set, demonstrating the effectiveness of the proposed approach.
منابع مشابه
Joint Enhancement of Multichannel SAR Data
In this paper we consider the problem of joint enhancement of multichannel Synthetic Aperture Radar (SAR) data. Previous work by Cetin and Karl introduced nonquadratic regularization methods for image enhancement using sparsity enforcing penalty terms. For multichannel data, independent enhancement of each channel is shown to degrade the relative phase information across channels that is useful...
متن کاملFeature-Enhanced Synthetic Aperture Radar Image Formation Based on Nonquadratic Regularization - Image Processing, IEEE Transactions on
We develop a method for the formation of spotlight-mode synthetic aperture radar (SAR) images with enhanced features. The approach is based on a regularized reconstruction of the scattering field which combines a tomographic model of the SAR observation process with prior information regarding the nature of the features of interest. Compared to conventional SAR techniques, the method we propose...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملSAR Moving Target Imaging in a Sparsity-driven Framework
In synthetic aperture radar (SAR) imaging, sparsity-driven imaging techniques have been shown to provide high resolution images with reduced sidelobes and reduced speckle, by allowing the incorporation of prior information about the scene into the problem. Just like many common SAR imaging methods, these techniques also assume the targets in the scene are stationary over the data collection int...
متن کاملFeature-enhanced synthetic aperture radar image formation based on nonquadratic regularization
We develop a method for the formation of spotlight-mode synthetic aperture radar (SAR) images with enhanced features. The approach is based on a regularized reconstruction of the scattering field which combines a tomographic model of the SAR observation process with prior information regarding the nature of the features of interest. Compared to conventional SAR techniques, the method we propose...
متن کامل